Speeding up HMRF_EM algorithms for fast unsupervised image segmentation by Bootstrap resampling: Application to the brain tissue segmentation
نویسندگان
چکیده
This work deals with global statistical unsupervised segmentation algorithms. In the context of Magnetic Resonance Image (MRI), an accurate and robust segmentation can be achieved by combining both the Hidden Markov Random Field (HMRF) model and the Expectation-Maximization (EM) algorithm. This EM–HMRF approach is accomplished by taking into account spatial information to improve the segmentation process which, in turn, slows the approach and consequently prevents its adoption for real-time applications such as three-dimensional medical image segmentation. We propose in this paper the use of the Bootstrap resampling to speed up the processing time of the EM–HMRF algorithm. This is accomplished by randomly selecting an optimal representative set of pixels according to some criteria originally defined for the blind segmentation. We will show how to adapt such criteria to the HMRF_EM algorithm context. We validated our proposition through a set of experiments and we proved that the use of the Bootstrap resampling yields the same accuracy and robustness as the basic algorithm, yet it amounts to a considerable processing speed up. r 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth
Background:Â Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective:Â This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملQuantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation
Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Signal Processing
دوره 87 شماره
صفحات -
تاریخ انتشار 2007